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1 Statement of Problem

Rule-based systems for planning abstract robotic tasks often suffer by making rule instantiations

which do not achieve the desired rule effects. In many of these instances, general rules 'Tail"

because a specific instantiation is an exception to the general case, and the resulting plan is faulty.
In other instances, the specific instantiation fails to achieve the desired effect due to unmodeled

perturbations in the environmental state. To overcome these problems, a probability value can be

associated with specific instantiations of general rules which quantitatively describes the likelihood

that the specific rule achieves the stated effect. From a given initial state, a feasible plan can be

developed that satisfies a stated goal by sequencing rules which have highly probable desired effects.

The uncertainty that the plan achieves the stated goal can be computed from the probability of
effect of each rule used in the plan.

However, since the number of possible instantiations of general rules in a rule store may be ex-

cessive, all specific rules cannot be tested thoroughly and maintained in memory with corresponding
probability of effect values. Instead, probability of effect values for untested instantiations must

somehow be reliably extracted from specific, tested rules.

This work focuses on the problems of: (1) Developing a methodology for finding sets of specific

rules which have a high probability of achieving a desired effect from a base which contains many

general rules and a limited number of specific instantiations of these general rules, and (2) sequencing
rules which have a high probability of effect to develop a plan of abstract tasks which achieves a
desired goal.

2 Overview

Consider a planner which attempts to construct a sequence of steps to transform an initialenvi-

ronmental configurationto a goal configurationusing rulesstored in a rule base. One approach in

creatinga plan isto find the differencesbetween the goal state and the initialstate and determine

which rulescan reduce thisdifferenceby matching the effectof the rulewith the goal state.When a



matched rule is applied, the task specified by the rule forms a subgoal. The problem is then reduced

to finding a set of rules which can be used to transform the initial configuration to the preconditions
of the subgoal. This backward chaining process, called Means-End analysis [NS72] is repeated until

a path of subgoal tasks can be found from the goal configuration to the initial state.

Given a rule base of general rules, each rule contains variables which can be instantiated with

many object names. At each subgoal step of a backward chaining search, a general rule from the

rule base is selected, and the task it specifies forms a subgoal. However, since each general rule

may have many different instantiations, this subgoal selection may lead to a large search space. To

reduce the size of the space, the search process should select only those instantiations of general

rules (called specific rules) which have a high probability of causing the desired subgoal effect. To

allow this selection to occur, a memory must be maintained which stores the subgoal tasks provided

by specific rules along with the probability that the task contained in the rule achieves its stated
effect.

Using this memory, each iteration of the search process can recall a set of applicable tasks to be

evaluated. An applicable task reduces the difference between the initial and current environmental

configurations and is contained in a specific rule which has a high probability of achieving its effect.

An uncertainty value can be computed from the probability of effect value of each task's specific

rule. One task can be selected from the recalled set to form a plan subgoal by using the uncertainty
of the plan as a cost measure to be minimized.

Figure 1 presents a typical tree generated from a search process. In this example, the robot must
be holding the bananas to achieve the goal state. This example shows subgoal determination and

selection. Each sentence in brackets is a subgoal task selected from the memory and has a high

probability of achieving its subgoal effect. Each task is also chosen to reduce the number of differing

states between between initial and current object configurations.

3 Identification of Significant Problems

From the above problem scenario, several significant problems can be identified in developing a
methodology for planning using rules that have probablistic effects. Given a rule base for manipu-

lating a set of objects in the environment, the problems addressed in this research are:

l. The possiblenumber ofgeneralruleinstantiationsmay be extremely large,so itisnot possible

to testallspecificrulesand storetheirprobability-of-effectvalues.Assuming the probability-

of-effectvalue isknown fora small number ofspecificrules(when compared to the totalnumber

of possibleinstantiations),the unknown valuesfor other specificrulesmust be inferredfrom

known effectprobabilitiesof specificrules.Therefore,a mechanism for extractingsimilarities

and interrelationshipsbetween symbols inrulesmust be developed to determine the probability

ofeffectvaluesof untested specificrules.

. A method forfindingsetsofapplicabletasksduring planning must be developed. An applicable

task reduces the currentproblem by subgoal divisionand belongs to a specificrule which has

a highlyprobable subgoal effect.

. Search techniques must be examined which develop low uncertaintytask plans. Task plans are

formed by orchestratingsubgoai determination and expansion usingruleswith highly probable

effects.The uncertaintyof a task plan isa functionof the probability-of-effectvaluesofeach

rulein the plan.

To approach a solutionto the outlined problems, the followingissuesare considered:

1. Representations of general rules, specific rules and objects in the environment.
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An architecturefora memory which distributesthe representationof rule tasksand effectsso

that quantitativeinterrelationshipsbetween symbols can occur.

A method for storingspecificrule tasks and the probability-of-effectvalues in the associative

memory using quantitativelinksbetween symbols. This allows untested specificrulesto have

theireffectprobabilitiesinfluencedby testedspecificrules.

A technique for extractingtasks from the associativememory. The recalledtasks belong to

specificruleswhich have a high probabilityofachieving a particulardesiredeffect.Given the

desiredeffectas input,the associativememory should provide the setof tasks as output. The

probability-of-effectvalue of each ruleshould also be accessible.

A planning technique which accessesthe associativememory to develop an ordered set oftasks

which form subgoals of a plan. The plan must satisfya given goal using specificruleswith

highly probable effects.The planner should attempt to minimize the uncertaintyof the plan.

Figure 2 outlines these issues and provides a datafiow description of this work.

4 Method of Approach

4.1 Representation

Before the significantproblems can be addressed, a rule representationmust be fixed,as well as

a representationfor objectsin the environment. As discussedin [Moe89], a binary representation

could be used to represent objectsand theirstates.Each object could be represented by a set of

objects states,where a particularstate is assigned the value I ifthe object is in that state,0 if

not. In effect,the object and itsset of possiblestatesform a schema, as shown in Figure 3. Since

a schema must maintain bitsfor activeand inactiveobject states,the schema sizefor each object

tends to be quite largeusing thisrepresentation.The schema bitsfor each object are concatenated

together to form an environmental statestring.This representationsuffersbecause of the largesize

of the environmental statestring.

A higher levelrepresentationallowsfor a more compact descriptionof the environmental state,

without lossof functionality.Let us assume that each object in the environment belongs to a

particulara prioriobject class.Each object classisa schema which possessesa set of object state

slotsthat contain the currentstateof an object that matches the object class.This representation

is very similarto object descriptionsin such systems as OPS5 [BFKM86]. An example of this

representationisshown in Figure 4. Using this representationfor objects reduces the sizeof the

environmental state by maintaining only object stateswhich are currentlyasserted. In effect,this

removes the need for 0 bitsin the earlierrepresentation.Further,thismethod forobject description

allowssimilarstatestobe more easilyextracted acrossobjects,which isvery difficultin the previous

representation.

Rules are representedby condition/sentence/effecttriples.The sentence portion ofa ruleisthe

robotic task which isexecuted to change the environmental state. Therefore, it isthe sentence

portion ofa specificrulewhich isused to form the subgoal task during planning.

In [Moe89], the conditionand effectportionsofa rulewere fullenvironmental statestrings.This

led to a sizablerepresentationfor a rule.Also, using a fullenvironmental statefor condition and

effectturned the ruleselectionprocess into a database lookup, since a rulecould not e:dstin the

rulestoreunlessithad been experimented with. This led to a huge storagerequirement for the set
of rules.

To reduce the sizeofeach ruleand the sizeof the rulestore,the followingframework isadopted.

Let the rulestore maintain two types of rules,generaland specific.Both types of rulesare condi-

tion/sentence/effecttriples.The form of the generalrulesare as follows:
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General Rules:

I.

.

Condition: Pairs of object class variables and object state variables. The object class variable

may already be instantiated with a particular object name. The object state variable may

already be instantiated with a particular object state. The object state variable is dependent

on the schema slot types aJlowable with the given object class.

Sentence: Actor, Action, Direct Object and Indirect Object quadruple where Actor, Direct

Object, and Indirect Object are object class variables. An object class variable in the sentence

may be instantiated with a particular object name. The Action is one of a set of possible
action names.

3. Effect:Pairsofobject classvariablesand objectstatevariables.The object classvariablemay

alreadybe instantiatedwith a particularobjectname. The objectstatevariablesmay contain

a modified value reflectingthe effectof the sentence on the environment.

An example of general rulesispresented in Figure 5. As shown, general rulesare similarto

uninstantiatedrulesin some expert systems.

Specificrulesare generalruleswith allobjectclassname variablesinstantiatedwith objectnames,

and allthe schema slotsinstantiatedwith object states.Specificrulesalsomaintain a probability-

of-effectvalue,which isthe likelihoodthat the rulesentence willcause the ruleeffectgiven the rule

conditions.The form of specificrulesisas follows:

Specific Rules

I. Condition: A set ofobject name and object statepairs.The statevaluesfillschema slots.

2. Sentence: Actor, Action, Direct Object and IndirectObject quadruple where Actor, Direct

Object and IndirectObject are object names and the Action isone of a set of possibleaction
names.

3. Effect:A set ofobject name and objectstatepairs.The object statesare modified schema slot

valuesrepresentingthe change in the environment due to the execution of the rulesentence.

4. Probability-of-effect:An experimentally determined value between 0.0 and 1.0 reflectingthe

likelihoodof the specificeffectoccuring.

An example of specificrulesis presented in Figure 6. Both the general rule base and a set

of specificrules are provided to the planning system from an external mechanism. While it is

easierto create the generalrulesin a top-down fashion,specificrulescan be developed bottom-up

from general rulesthrough an external algorithm such as PLAY [Moe89]. As shown, a particular

condition/sentencepair can have multiple effectswhose probabilitiessum to i.The probability-of-

effectvalue of specificrulesprovides a performance assessment of the applicabilityof generalrules
in differentsituations.

This representationof rulesand objects issuitablefor planning abstracttasks similarto those

planned by domain-independent planners such as STRIPS [FN71]. Itcan be directlyappliedto the

Organization Level ofthe IntelligentMachine [Sar79]as describedin [Moe89], which requiresabstact

reasoning as part of itshierarchicalintelligencesystem. Itisimportant to realizethat thistype of

representationisnot wellsuited for taskswhich requiremore detaileddescriptionsof objects,such

as geometric based planning.

4.2 Associative Rule Memory

An associative rule memory must be developed which can:

1. Distribute the representation of rule sentences (tasks) and effects over individual symbols.



2. Allow quantitative interrelationships between symbols.

3. Store rule sentences and corresponding probability-of-effect values in the quantitative links

between symbols.

4. Develop probability-of-effect values for untested specific rules based on tested specific rules
which have been stored in the associative memory.

5. Allow associative recall of rule sentences and probability-of-effect values given a desired effect
as input.

Connectionist networks (or artificialneural networks) provide a suitablearchitecturefor repre-

senting interrelationshipsbetween symbols and forachieving associativerecall.One connectionist

framework appropriate for thistype of problem isthe Boltzmann Machine [HS86]. In thisframe-

work, nodes are used to representsymbols, and weights (or connections) between nodes maintain

cross-correlationinformation about pairsof nodes. The goal of the network isto find a validset

of assertednodes which are highlycorrelated.In other words, the weights form a set of weak con-

stralntsbetween nodes, and satisfactionof the weak constraintsby node assertioncorresponds to

the associativerecall,or output of the network for a given input.

Severalrelatedtopicshave been examined using Boltzmann Machine architectures.One recent

system uses a Boltzmann Machine for Schema recall [RSMH86]. In this work, link weights are a
function of symbol co-occurance using a one node per symbol mapping. Schema recall is achieved

through local minimization of the Energy function using an asynchronous node search technique

developed by Hopfield [Hop82]. Another effort has used Boltzmann Machines to represent a small

production rule system [TH85]. Using about 8000 nodes, the six rule production system can do
single variable instantiation in a selected rule, and chain the results of one rule to fire another. A

distributed representation was used over the nodes to create the rules and working memory elements.

The weights in the network were fixed once assigned, so no new rules or working memory values
could be modified or added.

In the system proposed by this paper, the nodes of the Boltzmann Machine represent the symbols
of both the sentence and effect of a specific rule. Distributing sentences over individual symbols

allows sentences with subsets of identical symbols to share the same nodes and connection weights
in the Boltzmann Machine. By training the weights of the Boltzmann Machine, one can allow

sentence subsets which lead to more probable effects to influence sentences of untested specific rules

sharing the same nodes and connections. Similarly, sentence subsets leading to less probable effects
can influence nodes and weights of untested specific rule sentences and effects. Since the nodes

represent symbols, the weights can be used to determine which sets of symbols in a sentence should
be active for a desired effect input by searching for the maximum correlation between active nodes
in the network.

There are several research issues involved with the use of Boltzmann Machines. First, one must

determine a suitable set of nodes and a connectivity pattern between the nodes for the required set of

recalltasks.This definesthe architectureof the Boltzmann Machine. Second, a learningalgorithm

must be developed for assigning the weight values on the connections which in turn shapes the

landscape of effectprobabilities.Finally,search algorithms must be investigatedwhich find node

configurationswhich correspond to tasksof specificruleswhich have a"high probabilityofachieving
a given effect.

4.2.1 Architecture of the Boltzmann Machine

Figure ? presents a Boltzmann Machine architecture for the associative memory. Each node level
represents a set of symbols in a rule. From top to bottom, the [abeled levels are:

1. N: Object Name in Desired Effect



2. S: State of Object in Desired Effect

3. A: Actor of Sentence

4. V: Action of Sentence'

5. D: Direct Object of Sentence

6. I: Indirect Object of Sentence

Each node on each labeledlevelrepresentsone possibleinstantiationofallsymbols inthat symbol

class.For example, the Actor node levelmay contain 3 nodes corresponding to the actorsARMI,

ARM2 or ROBOT. Similary,the Action node levelcontainsindividualnodes forGRASP, RELEASE,

MOVE-TO, etc. Unlabeled levelscontain hidden nodes which represent pairwise combinations of

sentence symbols.

Connections axe made between nodes of differentlevels.Each connection contains a modifiable

weight which representsthe constraintthat one node placesupon another. Since only one Actor, one

Action, zero or one Direct Objects and zero or one IndirectObjects may be part of any sentence,

only one node on each of these levelsmay be active at a time. Therefore, there is no need for

connections between nodes of the same levelfor these symbol classes.Similarly,only one Object

Name node and one Object State node are assertedforeach Desired Effect,so connections are not

required between nodes of the same levelfor these classes.

The connection weights between nodes are used to store the probability-of-effectvaluesfor the

specificrulesrepresented in the network by assertedsentence and effectnodes. These probabil-

ity values axe derived from a "goodness" measure called Energy, which represents the amount of

correlation between a set of asserted nodes. A set of asserted nodes is called the configuration

of the network, and for a particular set of asserted nodes n - (no, nx,... ,nt), the Energy of the
confguration is given by:

1

E(n) = -_ _ _ w_jninj (1)

where wij isthe weight between nodes nl and nj and allni, nj e n. The system is definedsuch

that lower Energy network configurationsrepresentmore highly correlatedasserted nodes. Highly
correlatednodes form configurationswhich have high probability-of-effectvalues.

The term "Boltzmann Machine" isderived from the manner in which the Energy of a configura-

tionisrelatedto the probabilityof the configuration.Using a Boltzmann distributionanalog,the

relativeprobabilitybetween two network configuationsisgiven by:

P(ha) = e-(E(n")-E(nP))

(2)

where na, n_ are two network configurations,and P(.) isthe probabilityof the network being in

that configuration.Since the configurationprobabilityrepresentsthe probabilitythat a particular

sentence and effectare asserted on the network nodes, this value can be used as the probability-

of-effectvalue for specificrules.Therefore, the probability-of-effectvalue forspecificrulescan be

representedin the connection weights between nodes in the Boltzmann Machine.

Associativerecallisaccomplished by assertingthe Object Name node and Object State node in

the DesiredEffectlevels.These nodes form the input tothe network and arefixedduring recall.The

network then searchesfora setofsentenceswhich produce the desiredeffectby findingsetsofasserted

nodes on the sentence node levelswhich place the network in a low Energy configuration. Low

energy network configurationscorrespond to sentences which have a high probabilityof achieving

the desiredeffect.Concatenation ofassertednodes representingActor, Action, Direct and Indirect

Objects forms the sentence produced by associativerecall.



This representation was chosen because it allows a sentence to be distributed over a set of separate

symbols, and can allow particularsymbols to achieve correlationalrelationshipsthrough weight

adaptation in training. Also, the relationshipbetween symbols and desiredeffectsisdistributed

acrossthe representation.These relationshipsallowsymbols in untested specificrulesto have some

probability-of-effectvalue assigned based on a comparitivelysmall base of testedruleswhich share

symbols and connections.

4.2.2 Training the Boltzmann Machine

To store specificsentences and effectsin the associativememory, the Energy landscape must be

modified so sentences with a high probabilityof achievingparticulareffectscorrespond to low En-

ergy configurationsof the network. To accomplish the Energy landscape modification,the weights

between nodes ofthe network have to be adjusted.While techniquessuch as Error Backpropagation

[RM86] are used to adjustweightsforfeedforwardpatternclassificationtasks,they do not apply well

to associativeretrievalbased on Energy minimization. A Boltzmann Machine learningtechnique has

been developed for pattern classification,but itisquite unwieldy for largenetwork sizes[AHS85].

Due to the structureofthe problem at hand, itmay be possibleto modify thistechnique and make

itadmissiblefor probabilisticrulerepresentation.Techniques such as those presented in [RSMH86]

forschema retrievalare based on the frequency of occurance of palrwise nodes, and provide another

directionto investigatefor trainingthe associativememory.

A training procedure generallyconsistsof assertinga sentence and itseffectsymbols on the

corresponding nodes of the Boltzmann Machine. The connection weights between asserted nodes

are adjusted according to the probability-of-effectvaluestoredin the specificrule.Ifthe probability

islow, the weights are increased. Ifthe probabilityishigh, the weights are decreased in order to

reduce the Energy value forthisconfiguration.The exact methodology formodifying the weightsis
a researchtask that thiswork willaddress.

Also addressed willbe a method fortrainingthe network on the generalrulesin the rulestore.

Training the network on a generalrule createsa set of low Energy configurationsfor allpossible

instantiationsofthe generalrule.These configurationsarethen modified when the network istrained

on specificrules.

4.2.3 Search Techniques for the Boltzmann Machine

One of the significant problems addressed in this research is finding sets of specific rules which

have a high probability of achieving a desired effect. In the previous section, it was shown how a

Boltzmann Machine architecture could be used to store sentences, effects, and probability-of-effect

values of specific rules as a set of nodes and weights. Given a desired effect, the Energy of the

network can be minimized, yielding a network configuration which is the best sentence for achieving
the effect. Using this Energy value, the probability-of-effect value can be calculated. This section

describes search techniques which can be used to find the low Energy sentences corresponding to

sets of specific rules with highly probable effects that can be used as subgoals in planning.

Sentence search methods for this connectionist architecture must subsume the following criteria:

I. The Energy of a network configuration is used as the cost function to be minimized by the
search.

2. Each element generated by the search (search element) must be mapped to a binary represen-

tation corresponding to asserted sentence nodes in the network.

3. A search element is valid if it maps to one node per sentence node level.

4. The "goodness" of a valid search element is proportional to the network Energy once the

element is mapped and asserted on the sentence nodes. Low Energy configurations reflect
better search elements.



5. The search technique must findseverallow Energy sentences.

6. The search technique must be known to converge to the minimum Energy of the network,
when allowed.

Experimentation has been done on search techniqueswhich can be adapted to meet the above

criteri&The experiments conducted evaluated the time toreach the minimum Energy configurations

ofa fifteennode Boltzmann machine, where each node was connected toevery other node. The search

techniquesevaluated were Simulated Annealing, Modified Genetic Algorithm, and Random Search.

The Modified Genetic Algorithm isa form of the Genetic Algorithm [Ho175].The Modified version

has been proven to converge to the minimum of a costfunction,and has achieved good performance

in the conducted experiments [Moe89, MS89, SM88].

Further researchmust be done to develop methods forusing the algorithms to findmultiple low

Energy sentences insteadof a singlesolution.Also,since the number of validsearch elements isa

small subset of the possibly generated search set,a methodology must be developed to force the

search algorithm to generate only validelements.

4.3 Planning

Using a Boltzmann Machine architecture, the associative memory extracts similarities between sym-

bois in rules and provides probability-of-effect values for untested specific rules. The associative

memory can find sets of specific rules with highly probable effects and which divide a problem into

subgoals using search techniques that meet the criteria described above. Planning consists of deter-

mining which subgoal specific rules generated by the Boltzmann Machine should be expanded and
which paths should be explored.

The search technique employed for subgoal determination in planning is Means-End Analysis. As

discussed above, this technique attempts to reduce the difference between the initial configuration
of objects and a desired end configuration by a backward chaining search. Subgoal selection is based

on minimizing a cost measure. The cost measure to be minimized in this system is the uncertainty

of the plan, and is an entropy function of the probability-of-effect values of rules used in the plan
IMoe89]. When used with the associative memory, the recursive algorithm proceeds as follows:

i. Construct the set of objectstatedifferencesbetween the initialconfigurationand the current

desiredconfiguration.

2. For each object statedifference:

(a) This differenceis a desired effect. Assert the object name and desired state on the

corresponding nodes in the Boltzmann Machine.

(b) The Machine willproduce a set of applicablesentences which have a high probabilityof

achievingthiseffect.The number ofsentencesin the set islimitedto a certainmaximum,

and each sentence must have an effectprobabilityhigher than an a priorithreshold.

(c) Compute the uncertaintyof each applicablesentence.

(d) Selecta sentence from the applicablesetbased on plan cost.This isa subgoal task.

(e) Determine the costof the path inthe plan asa functionof the uncertaintyofthissentence

and decide whether to pursue.

(f) Iftoo expensive,examine other sentencesor return to previous decisionlevel.

(g) If not too expensive, find the sentence preconditions in the rule store and instantiate

sentence variablesand the initialstate of the environment to the preconditions. Ifall

preconditionsare satisfied,thissubgoal has been satisfied.Return thissolution.



(h) The set of unsatisfied preconditions now form subgoals and represent the current desired

configuration. Recur to 1.

3. If all subgoals are satisfied, a plan has been found, else report failure.

Referring again to Figure 1, this algorithm forms an AND-OR graph for planning where AND

arcs represent multiple object state changes which must occur to satisfy the goal state, and OR arcs

represent a choice among multple low uncertainty sentences which can be used in developing the

plan. A best first search can be used on this graph for determining which OR paths to expand based
on cost.

Cost metrics must be developed for this search. Possible metrics are total uncertainty of a plan,

or maximum uncertaintyof a ruleina plan. Included inthe metric may be a measure of the number

ofsentences in the plan in an attempt to trade offuncertaintywith plan length.

Planning robotictasks using these techniques may required additionalmechanisms such as con-

stralntpassing,which isincluded insuch systems as MOLGEN [Ste81a,Ste81b]. Constraintsoccur

in planning when a particularobjectstate isassumed by a planning step, and cannot be altered.

Since the Boltzmann Machine isused togenerate plan subgoals,constraintscan be used to alterthe

Energy valuesfor unusable sentencesby biasingparticularnode combinations. Constraintscan also

be used to guide the selectionofpaths forexplorationin the AND-OR graph.

5 Evaluation

The followingitems willbe used to evaluate the work and determine itscompletion.

• Training the Boltzmann Machine:

- Demonstrate the effectivenessof developed weight adaptation algorithms on the Energy

landscape of the Boltzmann Machine.

- Construct a set ofspecificrules with probability-of-effectvalues.Train the network on the

set ofspecificrulesusing a developed weight adaptation algorithm. ARer training,assert

the sentences on the nodes of the Boltzmann Machine and determine ifthe probability-
of-effectvaluesare consistent.

- Construct a set of untested specificrules. Heuristically,assign a range of expected

probability-of-effectvalues for each untested rule. Assert the sentences of these rules

on the nodes of the previouslytrainedBoltzmann Machine. Determine ifthe probability-

of-effectvalues are consistentwith the heuristicvaluesand evaluate resultsifdifferent.

* Searching forsentences ofspecificruleswith highlyprobable effectsinthe Boltzmann Machine.

- Construct a network with known Energy minima. Test searchtechniqueson thisnetwork

using search time and minima discoveryas the successcriteria.

- Evaluate search techniques on the Boltzmann Machine constructed through the above

trainingset by searching forsetsof specificruleswith highly probable effects.

• Planning

- Devise a case study and show that the planning algorithm can successfullyconstruct a

set ofsentences which achievea goal and minimize the uncertaintycost criteria.

- Construct a setof constraintsforthe casestudy and demonstrate the abilityto propagate

constraintsthrough alterationof the Energy landscape and limitedsubgoal selection.



6 Summary

This paper presents a planning system which uses an associative memory to select sets of tasks for

transforming a set of objects from an initial state to a final configuration. The tasks are containted

in rules which have probabilistic effects. The planning system attempts to minimize the uncertainty

of a plan by selecting only those tasks which belong to rules which have highly probably effects,

This work assumes that the following structures are provided:

• A set of object class schemas.

• A list of objects.

• A rule base with general rules.

• A set of specific rules with probability-of-effect values.

The significant problems addressed in this work are:

• The development of a mechanism for extracting similarities or interrelationships between sym-

bols in rules to provide probability-of-effect values for untested specific rules.

• A method for finding sets of tasks which develop planning subgoals. These tasks are sentences

contained in specific rules which have highly probable efl'ects.

• The development of a search technique which creates low uncertainty task plans by expanding

subgoais and exploring low cost paths.

The further research required to address these problems is:

• Development of training techniques for altering the sentence Energy values by modifying con-
nection weights.

• A methodology for training the Boltzmann Machine on general rules.

• Development of search methods for finding sets of low Energy sentences in the Boltzmann
Machine.

• Implementation of a planning algorithm using a best first search of an AND-OIt graph with
possible constraints.

• Determination of a set of cost metrics for selecting subgoal sentences.

• Development of a case study to test and evaluate the system using a generated set of general

rules and a set of specific rules for a set of tasks in a robotic environment. This case study
should be relevant to the Organization level of the Intelligent Machine.
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TYPICAL PLAN TREE

ROBOT HAS BANANAS

<ARM1 GRAB BANANAS> <ARM2 GRAB BANANAS>

ARM1 EMPTY ROBOT AT 2-2

(terminal)

<ROBOT MOVE 2-2>

ROBOT AT CEILING

<ROBOT CLIMB CHAIR> <ROBOT CLIMB TABLE>

ROBOT ON FLOOR

(terminal)

ROBOT ON FLOOR CHAIR AT 2-2

(terminal)

<ROBOT PUSH CHAIR 2-2>

ROBOT AT 2-2

<ROBOT PULL CHAIR 2-2>

I

I

I
I

V

CHAIR AT 9-9

(terminal)

ROBOT ON FLOOR

(terminal)

ROBOT AT 9-9

<ROBOT MOVE 9-9>

HGURE 1
ROBOT ON FLOOR

(terminal)



PLANNING SYSTEM BLOCK DIAGRAM

General and Specific

Rules for Training

RULE STORE

I. General Rules

2. Tested Specific

\ /

ASSOCIATIVE MEMORY

Stores:

I. Distributed Representation

of Specific Rules.

2. Probability of

Effect Values.

Rules

(given a prioi)

J

Desired Effect

f

Subgoal
Sentences

f

Effect

Probabilities

General Rules used

During Planning

\

PLANNER

1. Means-End Analysis

Search.

2. Subgoal Determination

and Expansion

3. Minimize Plan Cost

/ Inidal

V State

LIST OF SENTENCES

WHICH FORM TASK PLAN

/

Goal

State

FIGURE 2



Binary Schema Example

Object: Wrench

State

Wrench on Table

Wrench on Floor

Wrench in Box

Wrench in Arml

Wrench in Arm2

Wrench Open

Wrench Closed

Value

0

0

0

1

0

0

1

FIGURE 3

Object Class Schema Examples

Object Class: tooltype

Name: Wrench

Location: Table

State: Open

Object Class:

Name: A_I

Location: 2-2

Possession: Plyers

manipulatortype

FIGURE 4



GENERAL RULE EXAMPLE

Conditions:

manipulatortypel location x

objecttypel location x height y

Robot height y

Sentence:

manipulatortype l grasp obj ecttype l

Effect:

manipulatortype l possession objecttype l

FIGURE 5

SPECIFIC RULE EXAMPLE

Conditions:

A_I location 2-___2

Bananas location 2-__/2

Robot height Ceiling

Sentence:

grasp Bananas

Effects:

A_I possession Bananas

Probability: 0.98

]iam%a_ height Floor

Probability: 0.02

FIGURE 6
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NETWORK DIAGRAM AND PARTIAL WEIGHT DESCRIPTION
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